JOURNAL OF APPROXIMATION THEORY 79, 89-108 (1994)

An Optimal Stopping Rule for the »-Method
for Solving lli-Posed Problems,
Using Christoffel Functions

MAaRrTIN HANKE* AND HEINZ W. ENGL

Institut fiir Mathematik, Johannes-Kepler-Universitat, A-4040 Linz, Austria
Communicated by Paul L. Butzer

Received November 23, 1992; accepted August 17, 1993

We design an order-optimal stopping rule for the v-method for solving ill-posed
problems with noisy data. The construction of the v-method is based on a
sequence of Jacobi polynomials, and the stopping rule is based on a sequence of
related Christoffel functions. The motivation for our stopping criterion arises from
a careful comparison between the iterates of the v-method and the approximations
obtained from iterated Tikhonov regularization with (noninteger) order v. The
convergence results rely on asymptotic properties of the Christoffel functions.
© 1994 Academic Press, Inc.

1. INTRODUCTION

The concern of this paper is to introduce a new stopping rule for a
family of iterative regularization methods for solving ill-posed linear
equations with noisy data. This stopping rule is motivated by a parameter
choice method for choosing the regularization parameter in iterated
Tikhonov regularization, which is known to give (iterated) Tikhonov ap-
proximations of order-optimal accuracy for a maximum range of ill-posed
problems. This method was developed by Gfrerer in [5] and has been
generalized in [3] to a large class of regularization methods—iterative as
well as noniterative ones. In Section 2 we will exemplify the resulting
parameter choice strategy for iterated Tikhonov regularization, considered
as an iterative method. Independently, Raus [17] suggested an order-opti-
mal parameter choice strategy which coincides with the one from [3] in the
case of iterated Tikhonov regularization.

Since its introduction by Brakhage [2] the so-called v-method has been
proven to be an attractive alternative to conventional regularization meth-
ods, cf., e.g. [7). The v-method is a two-step iterative method defined by a
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sequence of Jacobi polynomials; v > 0 is a parameter to be chosen in
advance. It was shown in [2] that if the exact solution belongs to a certain
set 2, to be specified below, then there exist stopping rules which yield
approximations of order-optimal accuracy. Morozov’s discrepancy princi-
ple [12] would be a natural choice for such a stopping rule: it monitors the
size of the actual residual and terminates the iteration when the residual
norm drops below the noise level in the data. However, it can be shown
with an argument due to Groetsch [6, Theorem 3.3.6] that the discrepancy
principle does not always lead to full accuracy; order-optimal accuracy of
the corresponding approximations can only be guaranteed if the exact
solution belongs to a proper subset 2,_, , C 2, cf. [7].

The parameter choice rules developed in [3] and in [17] do not work for
the v-method, as will be shown in Section 4. The reason is a more
irregular behavior of the error in the »-method compared to other regular-
ization methods. However, via a surprising connection between the v-
method and iterated Tikhonov regularization we will still be able to
construct an order-optimal stopping rule for the v-method (Algorithm 4.2).
One can think of our approach as a transformation of the irregular error
curve into a smoothed one by using Christoffel functions associated to a
related sequence of orthogonal polynomials; a similar idea has also been
used in [8] where a heuristic stopping rule for the v-method was developed
for the case that even the data noise level is unknown. Qur criterion will
rely on an upper bound for the noise level; only for such criteria one can
expect results about convergence (rates), cf. Bakushinskii [1].

2. PRELIMINARIES

Throughout this paper we consider the linear equation
Kx =g, (2.1)

where K is a bounded linear operator between two Hilbert spaces %, and
#,, and g is in F#(K), the range of K. We denote by | - || the norms in
the respective Hilbert spaces, and assume without loss of generality that
|IK)Il = 1. We are primarily interested in the case where #(K) is not
closed. In this case the problem (2.1) is ill-posed because the
Moore—-Penrose generalized inverse K of K (the operator which assigns
the minimum norm solution x = K'g to g) is unbounded, cf. [6]. Thus, if
we have noisy data g¢ with

lige —gll <e, (2.2)

then, even if g* € #(K), K'g® will in general be far from K 'g. Hence,
(2.1) must be regularized.
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The construction of (linear) regularization methods can be based on
spectral theory: if, for « > 0, u_: [0, 1] — R is such that u_(A) — 1/A as
a — 0, pointwise on (0, 1], then one can define a regularized solution via

xt=u (K*K)K*g* (2.3)
and
x5, — K'g, e — 0,

if the parameter choice strategy a = a(e) is suitably chosen; for details and
precise assumptions we refer to [6].

Iterative methods can be treated in a similar manner. The continuous
regularization parameter o is replaced by the iteration index k, the
regularized solutions are defined via

xt = u, (K*K)K*g", (2.4)

where now u,: [0, 1] — R is such that u,(A) — 1/A pointwise on (0, 1] as
k — o,

A method that can be considered both as a continuous and as an
iterative regularization method is iterated Tikhonov regularization, where,
for @ > 0 and k € N, the regularized solutions are defined via

Xe0=0,
(K*K+ al)x; ,=K*g" +ax; |, (2.5)
which can also be written as
Xok = U ((K*K)K*g* (2.6)
with
(A +a) - a*
g 1(A) = W- (2.7)

If we keep k fixed and let a« — 0 then we obtain iterated Tikhonov
regularization of order k as studied, e.g., by King and Chillingworth [9].
But we can also keep a > 0 fixed and consider (2.5) as an iterative
method, cf., e.g., Kryanev [10]. In all regularization methods, an essential
question is the choice of the regularization parameter a or, analogously,
the choice of the stopping index k, the stopping rule. If the problem (2.1)
is ill-posed then the convergence can be arbitrarily slow, cf., e.g., Schock
[19]. Convergence rates can only be obtained under additional smoothness
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assumptions, namely source conditions of the type
x:=K'g e 2, =#(K*K)") (2.8)

for some p > 0; (2.8) may be interpreted as an abstract smoothness
assumption.

In practice w is rarely known so that a priori parameter choice or
stopping rules that depend on the knowledge of u are not practical. This
shortcoming can be overcome by using a posteriori parameter choice rules.
For a wide class of regularization methods, a posteriori rules with optimal
convergence rates were developed in [17, 5, 3]. We sketch the underlying
principle for the case of iterated Tikhonov regularization following the
approach in [5, 3]. The total error can be estimated in this case by

2
EHX —x;‘kllzsllx —xﬁ,’vkllz+52¥. (2.9)
The basic idea (for (2.5) considered as a continuous regularization method
with parameter «) is now to differentiate the right-hand side of (2.9) with
respect to a and equate the result to zero. This equation would certainly
determine an ‘optimal” regularization parameter because the (sharp)
estimate (2.9) is minimized, but cannot be implemented as it involves the
unknown exact right-hand side g. It turns out, however, that one may
replace g by g° and the resulting nonlincar equation determines a
regularization parameter a(e) which is now optimal in the sense that for
given g and ¢, there is a positive constant C such that

sup llx — x5, l<C sup infllx —xi L, (2.10)
llg—g*ll<e lg—gllee @>0

under quite reasonable conditions (cf. {3] for the precise statement). In
particular (2.10) shows that the actual error obtained from this stopping
rule has the same order of magnitude as the optimal error (minimized
over «) for worst case data perturbations. Equation (2.10) heavily relies on
a certain monotonicity assumption which implies that for exact data the
error decreases monotonically.

We mention, cf. [9], that for x = (K*K)*f € 2, with 0 <u <k the
optimality property (2.10) implies that

- 2
lx = x5 il < CIFINNY R Dg2ur/@urb) (2.11)

where C depends on u only. It is known (cf., e.g., Louis [11]), that the
order of the exponent of £ on the right-hand side of (2.11) cannot be
improved (uniformly in 2;) by any other regularization method. A param-
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eter choice rule (or a stopping rule) for which the corresponding error can
be estimated as in (2.11) will be called order-optimal for x € Z,. Note that
this notion is a bit weaker that the notion of optimality that we have
introduced before. We will come back to this in Section 6.

Next, we consider (2.5) as an iterative regularization method, i.e., we
keep a > 0 fixed and let &k — =, A similar argument can now be used to
derive a stopping rule k = k(¢), if we replace differentiation (with respect
to «) by a difference operator (with respect to k). The corresponding
results from [3] yield the following stopping rule: take k(e) to be the
smallest integer for which

(g, a®*(KK* + al) ™ *(KK* + 2al)g®) < 1e?  (2.12)

holds (with 7 > 2 fixed). The iteration may be rearranged so that the
left-hand side of (2.12) can easily be evaluated: if we compute

(KK* + al)zt , =g* +azf ,_,, (2.13)

Xok = K*z;,k’
then (2.12) can be reformulated as

az(ZZ.k+1 = Zok-1> Zak+1 ~ Zak) < 1e?, (2.14)
and the iteration is stopped with k = k(¢) as soon as (2.14) is satisfied for
the first time.

This stopping rule has the corresponding optimality property that

sup  lx = x| < C sup inf [lx —x; I, (2.15)
llg—gli<e lg—gll<e KNy
cf. [3] for the precise conditions. Since the iteration (2.13) is known to
reach order-optimal accuracy for all 2, with u > 0, cf, e.g, (17, 18], it
follows from (2.15) that the parameter choice rule (2.14) is order-optimal
for all 2, u > 0. Again, it is crucial for verifying (2.15) that for exact data
the iteration error decreases monotonically. As we will see in Section 4,
this property is lost for the vr-method, and therefore, the general rule from
[3] is not applicable as a stopping rule for the v-method.

The reason that we nevertheless include the above discussion stems
from an intimate connection between the v-method and iterated Tikhonov
approximations of order v that we will establish below.

640/79/1-7
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3. Tue v-MEeTHOD

The v-method was introduced by Brakhage [2], and studied subse-
quently in [7, 8). The special case v = 1 coincides with the Chebyshev
method developed by Nemirovskii and Polyak [14]). To obtain order-opti-
mal approximations, the positive parameter » should be chosen such that
v > u, where u is as in (2.8). This requires some, but not very detailed
prior knowledge about the exact solution x.

Given v, the iterates xj of the v-method are defined recursively for
k=1,2,..., by xi =0, z; = 0, and

o=z g H (=) zi o+ o (8" — Kxj_y),
xp = K*zp. (3.1

The scalar parameters x, and w, are given explicitly,

4v + 2
bl em T
and, for k > 1,

(k= 1)(2k - 3)(2k +2v - 1)
(k+2v— 1)(2k +4v — 1)(2k + 2v = 3)°
Rk+2v-1)(k+v-1)

(k+2v— D2k +4v - 1)

=1+

Wy =

For our analysis we will also require the “ideal”” approximations z{ and x|
that would have been obtained in (3.1) if ¢ were zero, and which we
denote by z, and x, from now on.

The r-method fits into the general framework (2.4) with

1 —pi(A)

up(A) = A

k]

and where p, are rescaled shifted Jacobi-polynomials,
pk(/\) - P/iZu— 172, — 1/2)(1 _ 2A)/P1£2u7|/2, - 1/2)(1).

Note that u, is a polynomial of degree k — 1. We refer to Szego [20] for
the many properties that are known about Jacobi polynomials.

For x € Z, with 0 < u < v, Brakhage [2] derived an order-optimal
a priori stopping rule for the v-method; it follows from the saturation
results in [7] that no such rule can exist for w > v. As in Section 2, we now
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want to find an implementable (a posteriori) stopping criterion which does
not require knowledge of u, but which nevertheless is order-optimal for
the full range of 2,,0 < u < ».

The stopping rule that we suggest below utilizes the fact that the
polynomials

Pi—i(A) — pi(R)

dk—l()‘) = A

are rescaled and shifted copies of the Jacobi-polynomials P{2* 172 ~1/2),

The d, _, occur naturally during the iteration as
zp —zp, =d,_(KK*)g", (3.2)

and have therefore been termed update polynomials in [8]. As there,
however, it is not the sequence {d,} of orthogonal polynomials that we will
primarily use for our stopping rule, but rather their associated Christoffel
functions: if we denote by Jk the orthonormalized update polynomials,
then the Christoffel functions associated with {d,} are defined as

n-1 -1
A,,(A)=(2J,§(A)) , 0<a<l, nenN, (3.3)
k=0

We will make essential use of the asymptotical properties of A, that were
obtained by Nevai [15] and subsequently refined by Erdélyi, Magnus, and
Nevai [4] who provided explicit estimates for the associated constants.
These results are reformulated in [8, Sect. 4] with special regard to our
particular application. As in [8] we write a, ~ B, if there are positive
constants ¢, C such that ca, < B, < Cay, k= 1,2....

We conclude this section with an interesting connection between the
v-method and iterated Tikhonov regularization of non-integer order v,
defined via (2.6) and (2.7) if & is replaced by v. Of course if v & N then
(2.5) cannot be used for an implementation. This connection to iterated
Tikhonov regularization is the basic motivation for our new stopping rule,
but Theorem 3.1 might be interesting in itself:

Tueorem 3.1.  Let v > 0, and denote by x!, , (and x, ,, respectively)
the approximations of iterated Tikhonov regularization of order v. Then
there is a constant C such that

Ix = xll < Clix = xp-2 M, k=1,2,..., (3.4)
while

g — xpll ~ llag 2, — x5 L k=1,2.... (3.5)
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Proof. For the kth iterate x, of the v-method we obtain from (2.4) the
iteration error

x —x, =p(K*K)x, (3.6)
while for iterated Tikhonov regularization of order v we have analogously

x—x,,=r. (K*K)x (3.7)

a )”
()\+a )

We first recall (cf,, e.g., [2, 8]) that there is a constant C, (depending on
v only) such that

with

i

To,(A)

pe(M) < Cio(kPA) ", 0<x<l, k=12,.... (3.8)

Thus, for « = k™2 < A < 1 we conclude

a \Y - 1
N == =27"(k% > —— Al
e = (57) =20 2 i)

On the other hand, for 0 < A < k%2 = a we have
P(A) <1 <2V, (A).

The spectral theorem, (3.6) and (3.7) now imply assertion (3.4) for the
iteration error.

Next we turn our attention to the perturbation error. Inserting g and g°¢
in (2.4), respectively, we have

X —xp = u (K*K)K*(g - g°),
Xogo— X4, =u, (K*K)K*(g~g*).

a, v o,

(3.9)

For 0 < A <k ?=a we apply the mean value theorem and Markov's
inequality, cf. [7, Eq. (7.2)], to obtain

up(A) = IP(A) < 2k,
and similarly,

14

2V+1k2'

Uy (A = I (M) 2 Ir (K72)] =
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Hence,

2v+2

0 <uy(A) < Uy (A) (3.10)

14

for A € [0, k2]. In the remaining interval [k 2, 1] we have
l—r,  (A)21-r, (k7?)=1-2""22""viog2,

while |1 — p, (M)} < 2; dividing by A we obtain (3.10) for k™2 <A < 1 as
well. Thus, the spectral theorem yields

x, —xpll < Cx, , — x5, (3.11)

a, v

for some positive C,a = k=2, and k € N.
To prove the converse of (3.11) we need to find a positive number C
such that the inequality

U, (A) < Cup(r), 0<ac<l, (3.12)

holds true for all k € N and @« =&~ 2 For k=1 and k=2 such a C
obviously exists because u, /u, , can be extended to a continuous, strictly
positive function on [0, 1]. Therefore, we can assume k > 2 in the follow-
ing. Let A, denote the smallest zero of p,; it is well known, cf., e.g., (20,
Theorem 8.9.1], that A, < ck~? for some ¢ > 0. Using the convexity of p,
in [0, A, ] we conclude

u (A=A 27k, 0<A <A (3.13)
On the other hand, the mean value theorem implies
u, (A) =i (D < Ir, (O =vk?,  0<A<h,. (3.14)

To estimate p, in I\ [0, A, ] we apply Sonin’s theorem, cf. [20, Sects. 7.31
and 7.32] and we show that the maximum M, of p, in [A,, 1] is less than
some 1 — § for all k > 2; here, 6 > 0 is independent of k. Szegd {20,
p. 169] has shown that M, is attained at A = X%, i.e., at the first relative
maximum of the graph of p, to the right of A = A,. Moreover, from [20,
Eq. (7.32.4)] we have

4v

2 _ Ve , 2
I—Mk—k(kuv)/o (1 = M) (Pi(1)) dA.

By means of [20, Theorem 7.32.4] we can now choose ¢, > 0 so small that

P (M) = cok?, 0 <A <c k2 <A,
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consequently,

4v
1 - MZ >

(.kl
* 1 - AT
_mk(k+2u)f() (1 — ¢,k ?)c2 k*da

4VC‘:< + o(1), k — .

Since the right-hand side is always positive, we can find 6 > 0 as desired,
Le.,

1 = p(A) 28 =>8(1—r, (A)), Ay <Aa <l

Together with (3.13) and (3.14) we have verified (3.12) for all A € [0, 1]
and k£ > 2, and hence,

llx, , — x5l < Cllx, — xill; (3.15)

w, v a, v

(3.11) and (3.15) finally imply (3.5). |}

Note that no analog of (3.5) is valid for the approximation error (3.4):
this will be exemplified in Example 6.1 where the left-hand side of (3.4)
vanishes for some k € N and x # 0; the right-hand side of (3.4) can only
vanish for x = 0.

Roughly speaking, Theorem 3.1 states that the v-method provides an
accuracy comparable to iterated Tikhonov regularization of order v. One
may even go somewhat further and consider the v-method as an (almost)
equivalent implementation of Tikhonov regularization (of order ») in
which the update of the regularization parameter is much less cumber-
some than in standard implementations of Tikhonov's method.

We further note that in conventional iterative regularization methods
the iteration index k is usually connected with 1 /a in (2.3); here we have
k ~ 1/ Va , which reflects the faster convergence of the »-method.

4. Tue New Svorering RULE

In this section we derive a new stopping rule for the v-methods. We
restrict our attention to stopping criteria which are determined by a
sequence of real functions {p,} in the following way, compare (2.12): stop
iterating with & = k(¢), when for the first time

(8", pu(KK*)g") < 7e?, (4.1)
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where 7 is such that
> lpe(Mllo.y,  k=0,1,2,.... (4.2)

As usual, || - lljp,;; denotes the maximum norm on [0, 1]. Note that if p, is a
polynomial of degree 2k + 1, then the left-hand side of (4.1) can be
evaluated with little extra effort during the (k + 1)st step of the iteration.

We first consider the stopping rule developed in [3]; it fits into the above
framework with

1 pl%(’\) —p£+l()‘)
d,(0) A

pi(A) = (4.3)

and r > 2. However, it turns out that, as opposed to iterated Tikhonov
regularization, the monotonicity requirements on the error mentioned in
Section 2 are not fulfilled for the v-method. Technically, these require-
ments [3, Assumption 3.1] would boil down to requiring that the sequences
{p (AN, 0 < A < 1, are decreasing in &, which is not the case as computa-
tions using, €.g., MAPLE, immediately show.! These oscillations in the error
curve have already been noted in [8).

It is for this reason that not only the optimality results from [3] cannot
be applied, but the stopping rule (4.1) with g, from (4.3) does not even
lead to a convergent regularization method, as the following example
shows:

ExamreLE 4.1. Let ¢, and ¢, denote the smallest zeros of p, and p,,
respectively, and consider the function g, (a polynomial of degree 3):
because of the interlacing properties of the zeros of orthogonal polynomi-
als we have £, < ¢, and p, changes sign between £, and £,; in fact, it is
not difficult to see that g, has a unique zero A% in the open interval
(£, £,). Now we consider a compact selfadjoint operator K with infinite
dimensional range and eigenvalue A, let the exact solution x of (2.1) be
an associated eigenvector with unit norm. Then, by construction and by
(4.2),

(g%, p(KK*)g") < llglloflg” — gll* < re?.
According to the stopping rule (4.1), the iteration will therefore be

"We kindly thank F. Peherstorfer for providing us with a theoretical analysis concerning
this question of monotonicity.
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terminated either with

» ) , Av+2 .
x5=20 or with x| = . 1K

I3

g .

In both cases, we conclude from the decomposition (3.6), (3.9), for the
error of the k(e)th iterate that

“x - x[i(E)” Z.D](/\z*) - 0(8)’

and therefore, x;,, does not approach the solution x as ¢ — 0.

We will now utilize Theorem 3.1 to construct an order-optimal stopping
rule. To this end, we will always assume » to be fixed and refer to the
iterated Tikhonov regularization method of order v briefly as the “iterated
Tikhonov method.” One conclusion that we may draw from Theorem 3.1
is, that a strategy for choosing the regularization parameter « which works
well for iterated Tikhonov regularization should yield similar results for
the v-method, when replacing « by k2. Note that the strategy (2.12) has
the form (4.1) with

a )Zv+l

A+ a

50 =

However, this choice of p would require inversion of KK* + al, which is
a price that we do not want to pay. Therefore, we will instead use
polynomials of degree 2k + | to approximate p,. Keeping in mind that
a = k~? we thus have to approximate

-2

3

(4.4)

> A
A >

. 1 I, 0<a
pulA) = ————577 ~ log2 o

(1 + k22) (k2A) L

This can be achieved with the Christoffel functions A, of (3.3) after
suitable normalization: we take

pi(A) = Ak+l(0)/11k+l(A)~ (4.5)
and obtain from [8, Eq. (4.8)] and (4.4)
pe(A) ~p(A)  ifa=k 2 keEN, (4.6)

uniformly for A € [0, 1].
At this point we mention that the general scheme by Raus [17] would
suggest the choice

Pi(A) = ka()\)l(zwwv; (4.7)
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although the conditions required in [17] are not satisfied here, and there is
no realistic way of implementing (4.1) with g,, it is nevertheless interesting
to remark that g, has a majorant with the same asymptotics as our p,, cf.
(3.8).

Note that p, of (4.5) is a polynomial of degree 2k, and—because the
maximum of A7}, is attained at A = 0—we have

lplo. 1y = 1, k=0,1,2,....

For our stopping rule, we insert p, of (4.5) into (4.1); then the left hand
side of (4.1) can be evaluated during the iteration with the following
algorithm (see Lemma 4.3 below).

ALGORITHM 4.2. Let 0, = Hg‘7H2, and select 7 > 1. Within the k& + 1st
iterative step, k = 1,2,..., compute

v = (1 —a)me + Bellzp, — zil%, (4.8)

where the parameters «, and B, are determined recursively by a, = 1
and

k(2k — 1)(2k + 2v — 1)

=1+

%k (k % 20)(2k + 4v + 1)(2k + 2v + 1) %~ 2t

B @+ 3) k=1,2 (4.9)
= —a,, =1,2,.... X
k2w f

Then, as stopping index k = k(¢), choose the smaliest integer & > 0 such
that

Nk < sz.

LemMA 4.3, The numbers m, computed by Algorithm 4.2 satisfy
L= (87, pu(KK*)g®), k=0,1,2,...,

with p, as in (4.5).
Proof. We show first that the a, as defined by (4.9) satisfy

a, =dH0)A, . (0), k=0,12,.... (4.10)

For k = 0 this is clearly true by the definition (3.3) of A,. The numbers
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Jk(()) are explicitly known (cf. [20] or [8)), so that (4.9) can be rewritten as
di_0
d3(0)

a,‘.‘f,, k=12,....

a,:' =1+
Now the assertion (4,10) follows easily by induction. Note that (4.10)
implies
1 —a, = A, (0)/A4,(0), k=1,2,.... (4.11)
Second, from the definition of 8, and from [8, Eq. (2.17)] we have
By = a,/di(0).

According to (3.2), the second term on the right-hand side of (4.8)
therefore equals

. 02 ay . .
Mzg, —zpllf = = *di(KK*)g"
Billzi = zill d,z((O)(g il )g")
= A, (0) (g, dR(KK*)g"). (4.12)

We finally observe that we have p, =1 so that the assertion of the
lemma holds for k& = 0. The general claim follows from (4.11) and (4.12)
by induction. i

5. ORDER-OPTIMALITY OF ALGORITHM 4.2

We now derive the convergence properties of our stopping rule. We
begin by showing that the iteration will always terminate:

ProrosiTioN 5.1.  If g € #(K) then Algorithm 4.2 determines a finite
stopping index.

Proof. This is a standard argument, see, e.g., [3, Lemma 2.3]. Accord-
ing to (4.4) and (4.6), p, converges pointwise to zero for A € (0, 1];
furthermore, p, is uniformly bounded. From the dominated convergence
theorem we conclude that

(85, 0 (KK*)g*) = (1 — P)g*ll>, &k — oo,

where P is the orthogonal projector onto the closure of #(K). Since
g € #(K), the right-hand side does not exceed ¢? and the claim follows.
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We now show that the v-method with the stopping rule proposed in
Algorithm 4.2 is order-optimal in all sets &, with 0 < g < v, i.e., in the
full range where this is possible:

THEOREM 5.2. Assume that g = Kx, x being the solution of minimal
norm. Then, Algorithm 4.2 is order-optimal forx € Z,,0 < u <v.

Proof. In view of (3.8) and (4.6) we can find a constant C such that

Pe(A) < Cp(M)/HHY . k=1,2,.... (5.1)
Moreover, it can easily be seen that for 0 < u < v there exist constants
C, such that

AETp (M) < C k™72 (5.2)
Now, fix 0 < 4 < v and assume that
x = (K*K)"f.
As mentioned previously, the iterates of the v-method when g* in (3.1) is
replaced by g are denoted by x,. Also, from now on, let k& be the

termination index obtained from Algorithm 4.2 (equivalently, from (4.1)
with p as in (4.5)). With this choice of k we finally introduce the operator

R — (pk(K*K))l/(ZL'+])’

and observe that [|R]| < 1.
Since p, is bounded by 1, the triangle inequality yields

(8, p(KK*)g) < 2(g", po(KK*)g7) + 262 < 2(7 + 1)e?. (5.3)

Using (5.1) and applying the interpolation inequality to RK*K we obtain
the following estimate for the iteration error at the stopping index,

e = xell = Il p K*K)(K*K)* £l < CIRK*K)* R* |
< CIIR"Hf|/ @R D) K*K)l/zRMn/z( K*K ) f][2/2u b
< C”flll/(2u+l)(g pk(KK*)g)M/(2“+l)_
Inserting (5.3) we deduce the order-optimality of the iteration error,

lx — x|l < ClIf||V/rT Dg2u/@urn, (5.4)
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If kK = 0 then we have no additional error due to the noise and we are
done. For the remaining cases we will first show that, for some constant C,

Il 1/Qu+1)

k sC(———) . (5.5)

£

In fact, if & = 1 then we have
re <my =gl = IK(K*K)*f+g" —gl’ < (Ifl + €)’.

From this we conclude that (5.5) holds with C = (r — 1)~!/@#*D_For
k > 1 we use the inverse triangle inequality to obtain the following analog
of (5.3),

(V1 = 1)'e? < (g, p_(KK*)§),

and then apply (5.2) to estimate the right-hand side,

(8. pioi(KK*)g) = (£, (K*K)* "' p, L (K*K)f)
< C (k= 1) ™ fI°.

Since k — 1 = k/2 in this final case, there is a constant C such that (5.5)
always holds. In view of (5.5), [7, Lemma 8.2] yields

g = x,ll < CILFII/% Ve sun, (5.6)

Combining (5.4) and (5.6) the assertion follows. |

We mention that Theorem 5.2 in particular implies, cf. Plato [16], that
our stopping rule is a convergent regularization method, i.e., if g € #(K)
then xi.,, = K'g as £ — 0. Estimates for the constants in (5.4) and (5.6)
may be deduced from [4], but this is beyond the scope of our paper.

6. COMPARISON OF THE AcTuAal ERROR
AND THE OpriMAL ERROR

In the previous section we have seen that our stopping rule is order-
optimal for x € #,, 0 < u < v, ie., the resulting approximations satisfy
(2.11). In this section we deal with the question whether our stopping
index is also optimal in the sense of (2.15). To simplify the notation, we
call [lx — x;,,ll the actual error e(g, g7) of Algorithm 4.2, if k(g) is the
corresponding stopping index. Obviously, the actual error depends on
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g, g% and on r. We compare the actual error e(g, g°) with the optimal
error e, (g,€) which is the error of the best iterate in a worst-case
situation,

eop(g,8) = sup inf [[x — xgll.
lg—gllce KENo

Clearly, if we could find some C > 0 such that e(g, g°) < Ce,, (g, ¢) for
all perturbed right-hand sides g satisfying (2.2), then our stopping rule
would be optimal.

As it turns out, however, our stopping rule is not optimal in this
stronger sense:

ExaMpLE 6.1. Let A% be a zero of the k,th Jacobi polynomial Pr,>
where k, € N is arbitrary but fixed. We consider a compact selfadjoint
operator K with spectrum {A,,A,A,, ...}, where A, >A,> ... are
infinitely many eigenvalues of K (different from A, ) converging to zero.
We assume that the exact solution x of our problem (2.1) is a unit
eigenvector of K for A,. Then, by construction and by (3.6),

llx —xg Il < llu, (K*K)K*lle < 2kye,

cf. [7, Lemma 8.2]. Note that the right-hand side depends on £ only.
Consequently, we have

eop(8,€) = O(g), e — 0. (6.1)

Now let & be the stopping index determined from Algorithm 4.2. From
(5.3) we then have

T+ 1
pk(Ai) < 2 A"' Ez,
*

hence, using the asymptotics (4.4) and (4.6) for the Christoffel functions,
we can find a (possibly) small but positive number ¢ depending on A, and
v only, such that

k > ce” /2D, (6.2)
Now, we choose perturbed data g*/,j = 1,2,...,in such a way that
gy — g =g, g, = 0A T, i=1,2,...,

where 8 is a positive constant to be determined later, and ¢; is a unit
eigenvector of K for A, We denote by k; the corresponding stopping
index of Algorithm 4.2. From (3.6) and (3.9) we conclude that the actual
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error is
e = xipll >, ()26, = 03(1 = pi (43)). (6.3)
Now, set
0= C2u+l(2(: )—(21’+l)/21f
* 1)

with ¢ as in (6.2) and C, as in (3.8); then it follows from (3.8) and (6.2)
that

L-p(B) =21~ C*(kj)‘j)’z" > 1 = WA P/
— 1 . C*ZL‘C*GZL'/(21'+I) — %
for all j € N. Thus we conclude from (6.3) that
e(g,g") = %0‘/‘2””5,-2”/(2””, J=1,2,....

Clearly, for j — o, i.e.,, for &; — 0, this rate of convergence is worse than
the convergence rate of the optimal error e, (g,¢;) as determined in
(6.1).

We may conclude from the above example that our stopping rule is
based on a certain estimate of the actual error which does not recover the
fluctuations of the error norm as k increases. As we have indicated
previously, our error estimate is based on a smoothed copy of the actual
error curve, and this reflects the role of the Christoffel functions. We also
observe from the construction in Example 6.1 that, to obtain an order-op-
timal stopping rule, it is necessary that the functions p, in (4.1) have the
same zeros as the polynomials p,. Note that this would be satisfied by the
functions p, of (4.7).

We finally mention that we have implemented Algorithm 4.2, and
compared it with the discrepancy principle for a ‘“model ill-posed
problem,” a first kind integral equation with a Green’s function as kernel
function,

opt

Ki(s) = ['k(s.0)x(1) =g(s), 0ss<1,
0
with

1’
1.

3
L]
1]
<y
|
=
A
[
A
IA

(%)
-~
—_
—_—
!
“
N
<
A
~
A
tq
A

This is a standard test example; in [7] it was reported that the discrepancy
principle terminates the iteration too late, when applied to the Chebyshev
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TABLE 1

Performance of the }-method

Optimal Algorithm 4.2 Discrepancy
1% noise 19 18 25 iterations
0.0293 0.0301 0.0415 relative error
0.1% noise 30 52 92 iterations
0.0087 0.0158 0.0222 relative error

method of [14] (i.e., the J-method). Note that v = 1 is of special interest

as with this choice of v the discrepancy principle fails to be order-optimal
for any set &, with u > 0.

Using the discretization and the second choice for x from [7, Sect. 11]
(the details are provided there) we obtain a significantly better perfor-
mance of our new stopping ruie. We have run the Chebyshev method on
this example with 1% noise and with 0.1% noise in the data; the iteration
count of the optimal iterate, the stopping index obtained from the discrep-
ancy principle and from Algorithm 4.2, together with the corresponding
actual (relative) errors are collected in Table I. These numbers correspond
to a choice of 7 = 1.2.
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